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Abstract

LiDAR-camera fusion techniques have demonstrated im-
pressive performance in 3D object detection, mitigating
each sensor’s limitations while improving the detection sys-
tem’s robustness. Having shown appealing properties of
flexibility, enabling dynamic and iterative evaluation, there
is an increasing trend of applying the diffusion model in sev-
eral computer vision tasks. While diffusion model has been
shown well efficient in 2D Object Detection[10], its perfor-
mance on 3D object detection tasks has not been explored
yet. In this paper, we propose the 3DifFusionDet frame-
work, which structures 3D object detection as a denoising
diffusion process from noisy 3D boxes to target boxes. In
this framework, ground truth boxes diffuse in a random dis-
tribution for training, and the model learns to reverse the
noising process. During inference, the model gradually re-
fines a set of boxes that were generated at random to the
outcomes. Under the feature align strategy, the progressive
refinement method could make a significant contribution to
robust LiDAR-Camera fusion. The iterative refinement pro-
cess could also demonstrate great adaptability by apply-
ing the framework to various detecting circumstances where
varying levels of accuracy and speed are required. We ex-
plored extensively the best possible feature fusion strategies
and finally proposed the fusion structure. Extensive exper-
iments on KITTI, a benchmark for real-world traffic object
identification, revealed that 3DifFusionDet is able to per-
form favorably in comparison to earlier, well-respected de-
tectors.

1. Introduction

With the introduction of 3D sensors and a variety of 3D
understanding applications, 3D recognition [71], object de-
tection [25], and segmentation [50] have come under more
scrutiny in research. 3D data is crucial for a wide range
of applications, including navigation [21, 24], augmented

reality [48], and robotics [23]. Among these tasks, 3D ob-
ject detection is a critical issue and a key stage in many
pipelines for 3D comprehension. Unlike traditional 2D ob-
ject detection, 3D detection provides richer spatial informa-
tion about objects, allowing for accurate depth perception
and volumetric understanding. Those advantages are cru-
cial in applications such as autonomous driving, where dis-
cerning the precise distance and orientation of surrounding
vehicles is an essential matter of safety.

Most high-performance 3D object detectors nowadays
utilize several sensors, including cameras and LiDAR, com-
bining information to perform 3D object detection [12,
61, 74]. Combining the high-resolution visual cues from
cameras with the depth information from LiDAR pro-
vides a more comprehensive scene representation, enhanc-
ing detection accuracy, especially in complex environments.
Moreover, multi-modal fusion mitigates each sensor’s limi-
tations [6, 15]. It improves the detection system’s robust-
ness, making it less susceptible to errors or ambiguities
from relying on a single sensor modality [43]. Owing to
these significant advantages, multi-modal fusion is arguably
the field’s future trajectory.

There are two crucial elements worth investigating, the
first being the 3D detecting head. Pre-defined anchor-box
proposals [51, 59, 72] and learnable anchor-free queries [14,
57, 73] are examples of traditional methods. The first
group of methods involves a pre-defined set of 3D bound-
ing boxes, called anchors, of different shapes and sizes
that slide across the spatial dimensions of the feature map.
For the second group, instead of using pre-defined anchor
boxes, these methods predict objects directly from feature
points or use other mechanisms, such as sparse convolution
windows [14, 65] or point bases [73].

Originating from the 2D object detection field, the query-
based detection paradigm has recently received a lot of at-
tention [19, 37, 64, 79], thanks to DETR’s [9] proposal of
learnable object queries to do away with the hand-designed
components and build up an end-to-end detection pipeline.
Several attempts in 3D object detection have been con-



ducted [6, 44]. These works manage a straightforward and
efficient architecture but still depend on a predetermined set
of learnable equations.

More recently, after observing tremendous success in
several generation tasks [3, 5, 32, 66], diffusion models
have been investigated in perception tasks like image seg-
mentation [7, 11, 25, 26], text-video retrieval [33], human
pose estimation [55]. DiffusionDet [10] proposes a novel
framework that directly detects objects from a set of ran-
dom boxes by using a diffusion model [30]. The underly-
ing principle of their noise-to-box paradigm is analogous
to the noise-to-image procedure observed in the denoising
diffusion models [16, 30]. These models construct images
by iteratively eliminating noise through a trained denoising
mechanism, achieving good but improvable performance in
2D detection. The diffusion model has shown the appeal-
ing properties of flexibility, enabling dynamic numbers of
boxes and iterative evaluation, which are all critical for the
object detection tasks. However, its performance on 3D ob-
ject detection tasks has not been well-explored yet.

In this paper, we extend the usage of noise-to-image de-
noising pipelines to 3D object detection. To exploit its po-
tential benefits and performance as much as possible, we de-
sign our noise-to-3DBox paradigm under a LiDAR-camera
fusion framework, which can provide a richer, more robust,
and comprehensive detection paradigm. We structure 3D
object detection as a denoising diffusion process [30] from
noisy 3D bounding boxes to target boxes. In this frame-
work, ground truth boxes diffuse in a Gaussian distribution
for training. These noisy boxes extract Regions of Inter-
est (RoI; [12, 29, 52, 59]) from the output feature map of
the backbone encoder. These RoI features are forwarded
to the detection decoder, trained to estimate the noise-free
ground truth boxes by learning the reverse process. When
the number of diffusion steps D ∈ N is large enough, e.g.,
D = 1000, the noisy boxes can be viewed as random vari-
ables sampled from the space of bounding boxes. During
inference, several randomly generated bounding boxes are
sampled for the learned reversing process to predict the 3D
ground truth boxes.

Compared to using Lidar-only methods, we choose to
adopt the fusion strategy due to its potential high perfor-
mance by mitigating each sensor’s limitations while im-
proving the detection system’s robustness. Therefore, the
second element comes the camera-LiDAR fusion align-
ment strategies. Camera images and LiDAR cloud fea-
tures are two inherently different features, where images
are a dense data representation with most of the space in
a point cloud being empty (“sparse”). Images contain rich
texture and color information while lacking depth informa-
tion. On the other hand, simply executing the RoIAlign
operations [10, 29] on the fused features does not fully
use the complementary information the two modalities pro-

vide. Drawing upon this, besides putting the point cloud
RoIAlign under the encoded 3D features, we also create
a second branch that performs an image RoIAlign under
the encoded 2D features. As for the connection of these
two feature branches, simply concatenating them will suffer
from information cuts which lead to reduced performance.
To this end, a multi-head cross attention mechanism [68]
is introduced to align these features deeply. These aligned
features are sent to the detection head in order to predict the
ground truth boxes without noise.

We evaluate 3DifFusionDet on the KITTI 3D object de-
tection benchmark [21]. With proper feature extraction and
fusion backbones [14, 28, 61, 78], 3DifFusionDet achieves
higher mean Average Precision (mAP), which outperforms
several latest and popular methods. Different from all other
SOTA 3D object detection methods, our 3DifFusionDet has
the ability to perform multi-step inference once training has
concluded. Besides that, our framework has the flexibility
to reach different levels of detection accuracy and inference
speed by changing the number of denoising sampling steps,
both of which reveal broader potential usages.

Our contributions can be summarized as follows:
• We formulate 3D object detection as a generative denois-

ing process and propose 3DifFusionDet, which to the best
of our knowledge is the first study to apply the diffusion
model to 3D object detection.

• We investigate the best camera-LiDAR fusion alignment
strategies under the generative denoising process frame-
work and propose 2-branch fusion align strategies to ex-
ploit the complementary information that the two modal-
ities provide.

• Extensive experiments are conducted on the KITTI
benchmark. 3DifFusionDet achieves competitive results
compared with existing well-designed approaches, show-
ing a promising future of diffusion models in 3D object
detection tasks.

2. Related Work

2.1. 3D Object Detection with LiDAR-Camera Fu-
sion

For 3D object detection, camera and LiDAR are two com-
plementing sensor types. LiDAR sensors specialize in 3D
localization and provide rich information about 3D struc-
tures, while cameras provide color information from which
rich semantic features can be derived [43]. Many efforts
have been made to accurately detect 3D objects by fus-
ing data from cameras and LiDARs. State-of-the-art ap-
proaches [6, 42, 49, 74, 76] are primarily based on LiDAR-
based 3D object detectors and strive to incorporate im-
age information into various stages of a LiDAR detection
pipeline since LiDAR-based detection methods perform
significantly better than camera-based methods. Combining



Figure 1. Overview of 3DifFusionDet.

the two modalities necessarily increases computing cost and
inference time lag due to the complexity of LiDAR-based
and camera-based detection systems. As a result, the prob-
lem of effectively fusing information from several modes
still exists.

2.2. Diffusion Models

A diffusion model [31] is a generative model that gradu-
ally deconstructs observed data by introducing noise and
restoring the original data by reversing this process. Diffu-
sion models and denoising score matching are connected
via denoising diffusion probabilistic models [30], which
have recently sparked interest in applications of computer
vision [7, 10, 26]. In several fields such as graph genera-
tion [32, 66], language understanding [4, 39], robust learn-
ing [46, 69] and temporal data modeling [35, 47] For in-
stance, DDPMs have been used for super-resolution appli-
cations by SR3 [54].

2.3. Diffusion Models in Vision Tasks

Diffusion models have achieved great success in image
generation and synthesis [16, 26, 30, 63]. Some pioneer
works adopt the diffusion model for image segmentation
tasks [1, 2, 7, 26]. Compared to these fields, their poten-
tial for object detection has yet to be fully explored. Pre-
vious approaches using a diffusion model for object detec-
tion are restricted to image-only input[10, 60]. Compared to
2D images, 3D LiDAR provides richer spatial information
about objects, allowing for accurate depth perception and
volumetric understanding, making it crucial in applications
such as autonomous driving, where discerning the precise

distance and orientation of surrounding vehicles is an es-
sential aspect of safety. To the best of our knowledge, this
is the first work that adopts a diffusion model to achieve 3D
object detection.

3. Proposed Method
Notation and Terminology. In the remainder of this pa-
per, we use upper or lower case letters (e.g., X or x) to
represent scalars, lower case bold letters (e.g., x) to denote
column vectors, and bold-face upper case letters (e.g., X) to
represent matrices, and upper case calligraphic letters (e.g.,
X ) to indicate sets or higher-order tensors. We use X⊤ and
x⊤ to represent the transpose of any matrix X and vector x.

3.1. Preliminaries

Diffusion Models. Modern diffusion models often em-
ploy two Markov chains: a forward chain to corrupt the im-
age using noise and a reverse chain to refine the noise back
into an image [30]. Formally, the forward noise perturbing
process at time step t is defined as q (xt | xt−1) for a data
distribution x0 ∼ q (x0). A variance schedule β1, · · · , βT

is used to progressively add, customarily Gaussian, noise to
the data:

q (xt | xt−1) = N
(
xt;

√
1− βtxt−1, βtI

)
. (1)

Given x0, we can quickly generate a sample of xt by
sampling a Gaussian random vector ϵ ∼ N (0, I) and per-
forming the following transformation:

xt =
√
ᾱtx0 + (1− ᾱt) ϵ (2)



where ᾱt =
∏t

s=0 (1− βs).
When being trained, a neural network is taught to fore-

cast x0 from xt for various t ∈ {1, . . . , T}. When making
inferences, we begin with random noise xT and iteratively
employ the reverse chain to produce x0.

DiffusionDet. It is the first diffusion model for the 2D ob-
ject detection problem [10]. In their context, data samples
are a collection of bounding boxes according to the formula
x0 = b, where b ∈ RN×4 is a set of N boxes. Diffusion-
Det builds the diffusion process during training, then learns
to reverse it, by training a neural network fθ (xt, t) to pre-
dict x0 from xt by minimizing the training objective with
ℓ2 loss [27]:

Ltrain =
1

2
∥fθ (xt, t)− x0∥2 . (3)

The model can handle a fixed number of 2D instance
boxes by padding additional boxes onto the initial ground
truth boxes. DiffusionDet is optimized using set prediction
loss [9] with optimum transport assignment [20] serving as
the label assignment approach.

For the inference approach, DiffusionDet additionally
makes use of DDIM [62] to improve the boxes for the sub-
sequent iteration of the sampling process.

3.2. 3DifFusionDet Architecture

Framework Overview. Fig. 1 shows the overall archi-
tecture of the proposed 3DifFusionDet. It accepts multi-
modal inputs, which include both RGB images and point
clouds. The input images are defined as I ∈ RHI×WI×3,
where HI and WI denote the image height and width di-
mensions, respectively. Meanwhile, the input point cloud is
represented as a set of 3D points P ∈ RHP×WP×DP in the
HP ·WP ·DP 3D space, where each point is a vector of its
(x, y, z)-coordinate.

We divide the entire model into feature extraction and
feature decoding components for the same computationally
intractable reason as DiffusionDet [10]: it would be (even
more) difficult to directly apply fθ on the raw 3D features
at each iteration step. The feature extraction part runs only
once to extract a deep feature representation from the raw
input X , while the feature decoding component takes this
deep feature as a condition and trains to progressively draw
the box predictions from noisy boxes ut.

To make full use of the complementary information pro-
vided by the two modalities, we separate encoders and de-
coders for each modality. In addition, we generate the noisy
boxes ui

t and up
t by distinct Gaussian distribution, using

the diffusion model, training the image decoder and point
cloud decoder individually to refine the 2D and 3D fea-
tures. As for the connection of these two feature branches,

simply concatenating them is going to incur an informa-
tion cut which leads to reduced performance. To this end,
a multi-head cross-attention mechanism [67] is introduced
to deeply align these features. These aligned features are
sent to the detection head to predict the final ground truth
boxes without noise. We introduce those afore-mentioned
functional components in detail to the reader:

Feature Extraction and Fusion Modules. Given raw im-
ages I ∈ RHI×WI×3 and 3D points P ∈ RHP×WP×DP ,
we use a separate feature extractor to encode them. For the
image encoder, following [10], we try convolutional neural
networks like ResNet [28] in the implementation of 3DifFu-
sionDet. In light of [40], ResNet generated using a Feature
Pyramid Network.

For the point encoder, we utilize voxel-based meth-
ods [14, 61] to extract, and adopt sparse-based meth-
ods [17, 18, 72] to process. Voxel-based methods convert
LiDAR points to voxels. Compared to other families of
point feature extraction methods, such as point-based meth-
ods, these methods discretize the point cloud into equally
spaced 3D grids, reducing memory needs while keeping
the original 3D shape information as much as possible.
Sparsity-based processing methods further help networks to
be computationally more efficient. These benefits balance
out the diffusion model’s comparably high computational
requirements.

Compared to 2D features, 3D features contain an addi-
tional dimension, making learning more challenging. Con-
sidering this, besides feature extraction from raw modal-
ities, we add a fusing path that adds the extracted image
features as another input for the point encoder, promoting
information exchange as well as exploiting learning from
more diverse sources. Here we adopt the PointFusion strat-
egy from [61], where points from the LiDAR sensor are
projected onto the image plane. The concatenation of im-
age features and the corresponding points are then jointly
processed by the VoxelNet architecture.

Feature Decoders. The extracted image features f i and
the extracted point features fp serve as input for the corre-
sponding image and point decoders. Each decoder addition-
ally incorporates input from the distinctively created noisy
boxes, ui

t or up
t , to learn to refine the 2D and 3D features

separately in addition to the corresponding extracted fea-
tures. How these noisy boxes are created will be introduced
in detail in Sec. 3.3.

The image decoder, taking inspiration from Sparse R-
CNN [64], receives input from a collection of 2D proposal
boxes to crop RoI-features [22] from feature maps created
by the image encoder. The point decoder receives input
from a collection of 3D proposal boxes to crop RoI fea-
tures [12, 36, 59] from feature maps created by the image



encoder. For the point decoder, the input is a set of 3D
proposal boxes to crop 3D RoI-feature from feature maps
generated by the point encoder.

Cross-Attention Module. Following the decoding of the
two feature branches, a method to combine them is needed.
One straightforward way is to simply connect these two fea-
ture branches by concatenating them. This way appears too
rough, which may lead the model to suffer from informa-
tion cuts, resulting in reduced performance (shown in 4.3).
Thus, a multi-head cross-attention mechanism (CA; [67]) is
introduced to deeply align and refine these features, which
is shown in Fig. 2.

Specifically, the output of the point decoder is treated
as the source of k and v, whereas the output of the image
decoder is projected onto q. The cross-attention process of
the two-stream features is formulated as follows:

CA(q,k,v) = Attn
(
qwq

i ,kw
k
i ,vw

v
i

)
wout (4)

where

Attn(q,k,v) = Softmax

(
qkT

√
dk

)
v (5)

such that q, k, and v are linearly projected to compute the
attention matrix [67], and qq

i , wk
i and wv

i are the projec-
tion layers with shapes Rdmodel×dq , Rdmodel×dk and Rdmodel×dv .
Then, the refined BEV feature is obtained from the output
layer wOut ∈ Rdv×dmodel . In addition, a residual path from
the original point encoder is added to enhance feature prop-
agation and strengthen the model’s flexibility:

x = CA(q,k,v) + x (6)

Seeking to learn more effectively, these aligned RoI features
will be delivered to the detection head and produce results
for bounding box regression and classification.

3.3. Training and Inference

Object Detection Head and Loss Function. Once get-
ting the Transformer output, we add a bounding box head
and a classification head to the output of the CA mod-
ule. The regression output features can be represented as
ûi = (cx, cy, cz, l, w, h, θ), while the classification head
outputs V̂ ∈ RN×(C+1) features, where C is the number of
classes. One class is added for the “no object” class, indi-
cating the absence of any recognized object. Each v̂i is the
predicted probability of the object belonging to the positive
class. We set the ground truth bounding box features to be
U and ground truth class features to be V, where each vi is
a one-hot encoder setting the component corresponding to
the class label to be 1 while zeroing all other components.

The Hungarian set prediction loss is applied follow-
ing [9, 10, 64]. In addition, by choosing the top k pre-
dictions with the lowest cost using OTA [20], an optimum

transport assignment approach, we assign numerous predic-
tions to each ground truth. For the cost computing on both
of the Hungarian set prediction and OTA, we utilize Focal
Loss [41] as classification cost, ℓ1 Loss, Generalized IoU
Loss [53] and Center Loss [79] as regression cost. For-
mally:

LTotal = λ1Lcls + λ2Lreg. (7)

The classification loss measures the error in predicting
the object class label. Here, the Focal Loss function [41] is
a modified version of the Cross-Entropy:

Lcls = −
∑
i

[vi(1− v̂i)γ log(v̂i)+(1−vi)v̂i
γ
log(1− v̂i)],

(8)
where γ is a modulating factor that controls the weight
given to each example. The regression loss measures the
error in predicting the object’s bounding box location (in-
cluding center, size, and heading). Inspired by [79], we add
the center loss Lcenter to jointly optimize for the best 3D
bounding box estimation under the 3D IoU metric:

Lreg = λ3LL1 + λ4LGiou + λ5LCenter (9)

Training. During training, we build the diffusion process
from ground truth to noise filters relying on the correspond-
ing bounding boxes, teaching the model to reverse this pro-
cedure after the noise has been added. To perturb these
ground truth boxes to noisy ones with Eq. (10), we ran-
domly choose a time step t. Additionally, noisy box fea-
tures are used to create noisy instance filters for training.
The last step consists of padding the ground truth bounding
boxes and their corruption as per [10]. Thus, we obtain the
predicted 3D bounding boxes:

ut =
√
ᾱtu0 + (1− ᾱt) ϵ

θ0 = η (f (ut, t))
(10)

where η denotes the 3D detection head layer and f(u, t)) is
the denoising process of the decoder.

Inference. Denoising sampling from noise to instance fil-
ters makes up the 3DifFusionDet inference pipeline. We
first start with bounding boxes uT sampled from a Gaus-
sian distribution, where the model iteratively uses to refine
its predictions as follows:

u0 = f (· · · (f (uT−s, T − s))) s = {0, · · · , T},
θ0 = η (u0) ,

(11)

Note that DDIM[62] is also used in our model, in line with
DiffusionDet.



Figure 2. The Cross-Attention Module and Detection Head

4. Experiments

4.1. Experimental Setup

Datasets. To demonstrate the effectiveness of 3DifFu-
sionDet, we present results on the KITTI 3D object de-
tection benchmark [21]. It is divided into 7,481 training
samples and 7,518 testing samples. The training samples
are commonly divided into a training set (3,712 samples)
and a validation set (3,769 samples) following [13], which
we adopt. Before being fed into the models, the dataset is
augmented by random 3D flips, random rotation, scale, and
translation, and shuffled the point data. We compare 3Dif-
FusionDet with existing methods on the test set by training
our model on both the training and validation sets. We eval-
uate the validation set for ablation by training our model on
only the train set.

Baselines. We compare our model to several baselines:
PV-RCNN [58], MVX-Net [61], PointRCNN [57], Part-A2-
free [59], CT3D [56], and 3D-SSD [73]. All of them have
been popular high-performance 3D object detection frame-
works in recent years.

Implementation Details. We implement 3DifFusionDet
using the MMDetection3D library [45]. The model is opti-
mized using the Adam [34] optimizer with a learning rate of
0.0001, optimizer momentum (β1, β2) = (0.9, 0.999), and
a dropout rate of 0.3. We train the model on an NVIDIA
RTX A6000 GPU for 60 epochs and validate after each
epoch. The voxel grid is defined by a range and voxel size in
3D space. On KITTI, we use [2, 46.8]× [−30.08, 30.08]×
[−3, 1] for the range and [0.16, 0.16, 0.16] for the voxel size
for the x, y, and z axes, respectively. For the direct set pre-
diction, we set the number of proposal boxes to 300. For the
diffusion model, we use Gaussian diffusion with D = 1000.
Following [9, 10, 79], we set the loss weights λ3 = 2.5
while letting others be 1.

4.2. Results

We conduct experiments on the KITTI 3D object detection
benchmark. Following the standard KITTI evaluation pro-
tocol (IoU = 0.7) for measuring the detection performance,
Tab. 1 shows the mean average precision (mAP) scores for
the 3DifFusionDet method compared to the state-of-the-art
methods on the KITTI validation set using 3D and bird’s
eye view (BEV) evaluation. We report its performance for
D ∈ {4, 8}, following[10, 26] and bold-face the two best-
performing models for each task.

As Tab. 1, our approach shows significant performance
improvements compared to the baselines. With D = 4,
it is able to outperform most of the baselines with a rela-
tively short inference time. By further increasing D such
that D = 8, taking into account a higher inference time, we
achieve the best performance among all models. This flex-
ibility reveals a wide range of potential usages. The trade-
off between accuracy and inference speed is discussed in
Sec. 4.3.

4.3. Ablation Studies

Firstly, we show the efficiency of using the fusion strat-
egy. We did two more experiments on KITTI that removed
all feature passes from the Lidar modality and image modal-
ity, respectively, keeping only a single feature passageway.
Showing the result in the first two lines of Tab. 2, we can see
the performance could drop dramatically without the image
feature or lidar feature fusing.

Secondly, we show the necessity of keeping the Image
RoI Align branch and the encoder feature fusion. For
designing a 3D Object detector from both Camera and Li-
dar using the diffusion model, the most straightforward ap-
proach should be directly applying the generated noisy 3D
boxes as input to the fused 3D features. This way, however,
could suffer from information cut, which leads to reduced
performance, as shown in the third line of Tab. 2. Drawing
upon it, besides putting the point cloud RoIAlign under the
encoded 3D features, we also create the second branch that
makes the image RoIAlign under the encoded 2D features.



Model mAPBEV (IoU = 0.7) mAP3D (IoU = 0.7) Runtime

Easy Med Hard Easy Med Hard (ms)

PV-RCNN[58] 86.2 84.8 78.7 N/A N/A N/A 59.2
MVX-Net (PF)[61] 89.5 84.9 79.0 85.5 73.3 67.4 125.6
PointRCNN[57] 87.9 90.2 85.5 88.6 88.9 77.4 100.1
CT3D[56] 88.5 86.1 79.0 90.5 87.1 79.0 N/A
3D-SSD[73] 89.7 89.5 78.7 89.4 87.5 78.4 38.9
Part-A2-free[59] 88.0 90.2 85.9 89.0 88.5 78.4 80.8
OcTr[75] 89.5 82.4 77.3 87.3 75.5 75.4 63.6
FastPillars[77] 88.2 83.2 81.1 89.1 85.3 77.6 53.2
BEVFusion[42] 89.5 88.9 86.3 89.0 87.1 77.4 70.3
TED[70] 91.6 85.3 80.7 91.5 85.7 82.2 105.5
LoGoNet[38] 91.8 85.0 80.7 91.8 85.0 82.4 96.3
3DifFusionDet (D = 4) 89.9 91.3 85.3 90.5 88.2 79.7 43.2
3DifFusionDet (D = 8) 90.3 91.8 86.3 91.3 89.5 80.4 67.2

Table 1. Comparison of attained validation mAP (in %) on KITTI with IoU = 0.7.

Easy Med Hard

W/o Lidar modality 48.4 41.3 38.6
W/o Image modality 67.3 56.7 52.4
W/o Image RoI Align 86.4 75.0 74.8
W/o encoder feature fusion 87.0 77.8 75.4
W/ Both 90.5 88.2 79.7

Table 2. Performance gap of removing certain parts on AP3D (in
%) on KITTI with IoU = 0.7

Fusion Align Easy Med Hard

Sum 86.8 72.0 70.8
Concat 86.5 72.4 71.1
DP 86.2 80.5 75.6
MLP 87.0 83.9 76.5
CA 88.8 87.9 78.1
Res-CA 90.5 88.2 79.7

Table 3. Performance gap of different feature align strategies on
AP3D (in %) on KITTI with IoU = 0.7

Much better utilization of the complementing information
offered by the two modalities is shown in the fourth line of
Tab. 2, by significantly higher performance.

Then we analyze the influence of using different feature
fusion strategies: given the learned 2D and 3D represented
features, how can we combine them more efficiently? Com-
pared to 2D features, 3D features contain an additional di-
mension, making them more challenging to learn.

Firstly, we investigate the connection of the two feature
branches following the decoding. Here we applied a multi-
head cross-attention mechanism (CA and Res-CA) [67] to

#Boxes D Easy Med Hard FPS

300 1 87.1 85.3 77.7 19
100 4 86.8 85.5 77.3 13
300 4 90.5 88.2 79.7 12
300 8 91.3 89.5 80.4 6

Table 4. Accuracy vs. speed. Using more proposal boxes incurs
a higher performance gain at the cost of latency on AP3D (IoU =
0.7).

deeply align and refine these features. Besides this way,
more straightforward ways like using the concatenation op-
eration, the sum operation, the direct product operation
(DP [8]), and using a multi-layer perceptron (MLP) are all
investigated. The first four lines of Tab. 3 show their re-
sults. Among all, the cross-attention mechanism shows the
best performance, with almost the same training and infer-
ence speed. This demonstrates its promising features.

Inspired by [61], we also add an information flow path
from image feature to point feature by additionally project-
ing points from the LiDAR sensors, using the concatenation
of image features and the corresponding points to be jointly
processed by the VoxelNet architecture. The fifth and last
line of Tab. 3 shows its benefits gain on detection accuracy.

Next, we investigate the accuracy and inference speed
trade-off. By comparing the 3D detection accuracy and
number of frames per second (FPS), we show the influence
of choosing different proposal boxes as well as D. Shown
in Tab. 4, the number of proposal boxes are chosen from
100, 300, whereas D is chosen from 1, 4, 8. The run time
is evaluated on a single NVIDIA RTX A6000 GPU with
a batch size of 1. We see that increasing the number of



proposal boxes from 100 to 300 significantly increases the
accuracy gain with negligible latency cost (13 FPS vs. 12
FPS). On the other hand, better detection accuracy incurs a
longer inference time. As we vary the D from 1 to 8, the 3D
detection accuracy increases from steeply (Easy: 87.1 mAP
to 90.5 mAP) to relatively slowly (Easy: 90.5 AP to 91.3
mAP), while the FPS decreases constantly. Note that we
did the reference on only one RTX A6000 GPU. Referred
to [26], who got nearby FPS values as ours by running on a
single V100 GPU, arguing that their method could reach a
similar real-time level as [10] in 2D object detections. Our
model should also reach real-time inference speed when
running on a high-performance GPU like A100, which [10]
utilized.

4.4. Case Study and Future Work

Based on its unique properties, we discuss potential usages
of our 3DifFusionDet. Generally, inferring accurately, ro-
bustly, and in real-time are three requirements in object de-
tection tasks [43]. In the perception field of self-driving
cars, considering the fact that a high-speed car needs to take
extra time and distance to slow down or change direction
due to inertia, the perception model is especially sensitive
to the real-time requirement. More importantly, to guaran-
tee a comfortable riding experience, the car should run as
smoothly as possible with the minimum absolute value of
acceleration, under the premise of safety. It is one primary
advantage over other similar self-driving car products that
withing smoother riding experiences. To this end, whether
it is to speed up, slow down, or turn, self-driving cars should
start to respond in a quick manner. The quicker a car starts
to respond, the more robust space it earns for following op-
erations and adjustments. This is even more important com-
pared to getting the most precise detected object’s classifi-
cation or location first: as a car starts to respond, there is
still time and distance to adjust its manners, which could be
utilized to make further inferences in a more precise way,
whose result subsequently finetunes the driving operation
of the car.

Our 3DifFusionDet naturally matches the need. As
Tab. 4 shows, when the inference step is small, the model
could make inferences in a quick time with roughly high-
accurate results. This initial perception is precise enough
for a self-driving car to start its new response. As the infer-
ence step grows, higher accurate detected objects are gen-
erated, further finetuning its response. This progressive de-
tection manner fits in nicely for this task. In addition, since
our model could change the number of proposal boxes dur-
ing reference, the prior information obtained from the small
steps could in turn be used to optimize the real-time pro-
posal box number. As Tab. 4 shows, the performance varies
under different prior proposal boxes. Therefore, developing
such a self-adaptive detector is one bright future work.

Besides self-driving cars, our model inherently matches
any real-world scenario that requires short inferring time
in continuous reaction space, especially in scenes where
the detector is moving based on the detected result. Ben-
efits from the nature of the diffusion model, 3DifFusionDet
could find the almost-accurate real space regions of inter-
est in a quick time, triggering the machine to start mak-
ing new operations and self-optimization. The following
higher-accurate perceptron further finetunes the machine’s
operations. To deploy our model into these moving detec-
tors, one open issue is the strategy that combines the in-
ferred information from between larger steps’ early infers
and smaller steps’ latest infer, which is another open ques-
tion.

5. Conclusion
This paper presents 3DifFusionDet, a novel 3D object de-
tector with robust LiDAR and camera fusion. Formulating
3D object detection as a generative denoising process, it is
the first work that applies a diffusion model to 3D object de-
tection. This work investigates the most effective camera-
LiDAR fusion alignment strategies within the context of the
generative denoising process framework, and it proposes fu-
sion align strategies to make full use of the complement-
ing information offered by the two modalities. 3DifFu-
sionDet achieves favorable performance compared to well-
established detectors, demonstrating a promising future of
diffusion models in object detection tasks. The robust learn-
ing results and flexible inference mode makes it promising
in potential usages.
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